Διαθέσιμο κατόπιν παραγγελίας
Αποστέλλεται την ίδια ή την επόμενη εργάσιμη
ISBN:
9789609443135
Κατηγορίες:
Έτος κυκλοφορίας
Εκδότης
Κεντρικό θέμα της διακριτής (ή, αλλοιώς, συνδυαστικής) βελτιστοποίησης είναι η θεωρία ροών σε δίκτυα. Η θεωρία ροών σε δίκτυα έχει εξελιχθεί σε ένα από τους πιο επιτυχημένους κλάδους των Εφαρμοσμένων Μαθηματικών και της Επιχειρησιακής Έρευνας ενώ παρουσιάζει ισχυρές διασυνδέσεις με τη θεωρία της υπολογιστικής πολυπλοκότητας και τη θεωρία των δομών δεδομένων. Δημιουργήθηκε από ένα ευρύ φάσμα πρακτικών εφαρμογών οι οποίες συνεχώς μέχρι σήμερα πολλαπλασιάζονται. Για την επίλυση των πρακτικών αυτών προβλημάτων αναπτύχθηκε μια αυτόνομη μαθηματική θεωρία που προέκυψε από τις ιδιότητες των μαθηματικών δομών που χρησιμοποιήθηκαν για να προσομοιώσουν τα πραγματικά προβλήματα.
Η εξέλιξη των αλγορίθμων για την επίλυση των προβλημάτων αυτών έδωσε την αφορμή για να αναπτυχθεί σημαντική έρευνα στους τομείς των Διακριτών Μαθηματικών, της Επιχειρησιακής Ερευνας, της Θεωρίας Γραφημάτων, της Θεωρίας Βελτιστοποίησης, και της Θεωρίας της Υπολογιστικής Πολυπλοκότητας. Τέλος, η δυνατότητα των δομών δεδομένων να απεικονίζουν αποτελεσματικά τόσο τα γραφήματα όσο και την πληροφόρηση που απαιτείται κατά τη `λειτουργία` αλγορίθμων γραφημάτων συνέτεινε στο να αναπτυχθούν πολύ επιτυχείς αλγόριθμοι που στηρίζονται τόσο στις μαθηματικές ιδιότητες των προβλημάτων αυτών όσο και στις ιδιότητες των δομών δεδομένων. [...]
Η αποτελεσματικότητα των αλγορίθμων δικτύων έχει σαν αποτέλεσμα να λύνονται σήμερα προβλήματα τα οποία εθεωρούντο πολύ μεγάλου μεγέθους για υπολογιστική προσέγγιση.
Στα κεφάλαια που ακολουθούν παρουσιάζονται οι διαφορετικές όψεις του θέματος. Στο Κεφάλαιο 1 αναπτύσσεται η μορφοποίηση των προβλημάτων δικτύων. Στο Κεφάλαιο 2 αναπτύσσονται οι αρχές των βασικών αλγορίθμων για την επίλυση των προβλημάτων αυτών. Στο Κεφάλαιο 3 παρουσιάζονται τα κυριώτερα πρακτικά προβλήματα που είναι δυνατό να απεικονιστούν με μαθηματική διατύπωση προβλημάτων δικτύων και να αντιμετωπισθούν με τους αντίστοιχους αλγορίθμους. Στο Κεφάλαιο 4 παρουσιάζονται αλγόριθμοι ταιριασμάτων σε διμερή γραφήματα και θα θέλαμε να ευχαριστήσουμε τον Δρ. Παύλο Ειρηνάκη για τη συνεισφορά του στο υλικό της Παραγράφου 4.3. Στο Κεφάλαιο 5 παρουσιάζονται ορισμένες γενικότερες μέθοδοι συνδυαστικής βελτιστοποίησης που αφορούν ειδικές κατηγορίες προβλημάτων με ακέραιες μεταβλητές. Στο Κεφάλαιο 6 παρουσιάζονται ορισμένα βασικά μοντέλα ακέραιου προγραμματισμού. Κλείνοντας, στο Κεφάλαιο 8 παρουσιάζονται οι βασικοί αλγόριθμοι υπολογισμού ελάχιστων δένδρων.
[Απόσπασμα από κείμενο παρουσίασης εκδότη ή έκδοσης]
Ο Γιάννης Μούρτος είναι Επίκουρος Καθηγητής "Μαθηματικών της Επιχειρησιακής Έρευνας" στο Τμήμα Διοικητικής Επιστήμης και Τεχνολογίας του Οικονομικού Πανεπιστημίου Αθηνών. Σπούδασε Μηχανικός Η/Υ & Πληροφορικής στο Πανεπιστήμιο Πατρών και κατόπιν ολοκλήρωσε τις μεταπτυχιακές του σπουδές (ΜSc, PhD) στην Eπιχειρησιακή Έρευνα στο Πανεπιστήμιο του Λονδίνου (London School of Economics & Political Science). Έχει, επίσης, εργαστεί ως Λέκτορας στο Τμήμα Οικονομικών Επιστημών του Πανεπιστημίου Πατρών.
Η ερευνητική του δραστηριότητα εντάσσεται κυρίως στις περιοχές της Συνδυαστικής Βελτιστοποίησης και του Ακέραιου Προγραμματισμού, ενώ παράλληλα εξετάζει τον συνδυασμό αλγορίθμων Ακέραιου και Λογικού Προγραμματισμού. Έχει δημοσιεύσει σε περιοδικά Επιχειρησιακής Έρευνας, όπως "Mathematical Programming", "Informs Journal on Computing", "SIAM Journal on Discrete Mathematics", "Operations Research Letters", "European Journal of Operational Research and Discrete Mathematics", για αρκετά από τα οποία έχει επιτελέσει καθήκοντα κριτή. Επίσης, έχει συμμετάσχει σε Εθνικά και Ευρωπαϊκά ερευνητικά προγράμματα.
Δείτε όλα τα βιβλία του συγγραφέα